Carnegie Mellon University

Heinz

95-865 Pittsburgh Lecture 11:
Time Series Analysis With
Recurrent Neural Nets

George Chen

RNNs

What we've seen so far are “feedforward” NNs

RNNs

What we've seen so far are “feedforward” NNs

What if we had a video?

R N N S Feedforward NN’s:

treat each video frame

separately
> >
Time 1 > >
Time 2 > >

Time 1

Time 2

Feedforward NN'’s:
treat each video frame
separately

> RNN’s:

feed output at previous
time step as input to
RNN layer at current
time step

>
INn keras, different

RNN options:
SimpleRNN, LSTM,
GRU

>
Recommendation:

don'tuse SimpleRNN

Time series

RNNs

Feedforward NN'’s:
treat each video frame
separately

RNN’s:
feed output at previous
time step as input to
RNN layer at current
time step

W/

RNN layer

>
INn keras, different

RNN options:
SimpleRNN, LSTM,
GRU

Recommendation:
don'tuse SimpleRNN

Under the Hood

current state = 0
for input 1n 1nput sequence:

output = g(input, current state)

current state = output ‘\\\

J
Different functions g correspond to different RNNs

Example: SimpleRNN

memory stored in current _state variable!

¢l EEN EN BN BN BN BN BN BN BN BN BN BN BN BN BN B B B = W

for input 1n 1nput sequence:
output = activation(np.dot(W, input)
+ np.dot(U, current state)
+ D)
current state = output
Activation function could, for instance, be Rel .U

Parameters: weight matrices W & U, and bias vector b

Key idea: it’s like a dense layer in a for loop with some memory!

R N N S Feedforward NN’s:

treat each video frame
separately

RNN’s:
readily chains together with - feed output at previous
other neural net layers time step as input to

RNN layer at current
time step

> >

In keras, different
RNN options:
SimpleRNN, LSTM,

Time series RNN layer GRU

ike a dense layer

Recommendation:
that has memory

don'tuse SimpleRNN

R N N S Feedforward NN’s:

treat each video frame
separately

RNN’s:
readily chains together with - feed output at previous
other neural net layers time step as input to

RNN layer at current
time step

>
INn keras, different

Cl
l

RNN options:
| | SimpleRNN, LSTH,
Time series RNN layer GRU
ike a dense layer Recommendation:

that has memory 4 i 1ee SimpleRNN

R N N S Feedforward NN’s:

treat each video frame

separately
RNN'’s:
readily chains together with - feed output at previous
other neural net layers time step as input to
RNN layer at current
_ _qci_; time step
— |Z|— 21—
O Q_Cg In keras, different
RNN options:
| | SimpleRNN, LSTM,
Time series RNN layer GRU
Iike a dense layer Recommendation:

that has memory 4 i 1ee SimpleRNN

RNNs

Example: Given text (e.g., movie review, Tweet), figure out whether
it has positive or negative sentiment (binary classification)

Positive/negative

Text —» —> .
sentiment

Classifier

Common first step for text:
turn words Iinto vector
representations that are RNN layer
semantically meaningtul

(Flashback) Example Application of PMI:
Word Embeddings

2
China
Beijing
1.5 F Russia
Japam
1 MOscaow
Furkey sAnkare Tokyo
NS
Polanck
0 Gernrany
France Waraaw
X Bedin
0.5 Itaaly- Paris
’ Graace Roﬁﬁg‘e e
1 R Spaire
i - Madind
1.5 FPorlugal Lisbon
.2 1 1 1 1 1 1
-2 15 -1 0.5 0 0.5 i 15 2

Image source: https://deeplearmning4).org/img/countries_capitals.png

Flashback) Do Data Actually Live on
Manifolds?

A 5ok
hour e beel™®
mrs rdEmiCKEn
x sKe gravy
CaKe
pepper keep v fat . friad
p:mllmix whi potatags o
ﬂoﬁ%;%n crifncer MAd%hese g he e s
" !) . e .
&) roll IlllU an uywerea“ Cr'ocd aint
oven waler before A
;:w(',’,'r,, "‘e&'n“ from ofthe _this 1he§® 'D,cf.;q P
waul . “7 -
W 1| v 1S l’akc ba ng
remo :u nolf -..,,.“ghi, N W hg!'. withvas . Q)O&\at cream ::cmrg
i . ' over yhen,." flavor cookiry
your Juice o Vi 3:;1%0”9 B0 it e e Ydﬂa::f taste ’
W . (
" till e Ut atthem bul aw e
p s CO v e m o ar .
N hours Blihrough evarnfter firgg S0 C s Wl e
§ dispm h o wlmlx?a‘"eqm-e anome: €ncugh will Ymitmeg teasoon
o - EEBC wpr mgy,pfﬁ e inay qL mns;canw-u‘:ml_,'pan Mg.;%%rpggnlul
r"an cover sarve e o W€| -) SFO.’)ﬂ'l‘ ' - :uctcﬁn
C SEMNVE L mbs if waYy no AP
quarter . il leron lixe ~ ¢ 4 cups
ite faw OlNEr
%"nd E'"hou'""ﬁm', placiime . fhosgcing - ’}09 gth ehckec Ladlespoaniuis
shrain take hou avenf o amnee FrOTURE Wihreeurds
So'n — very ™Y)
; ounces \ab hot .. - ils oasle 5i
& L] v
mlr‘Jg%lerd “ Ig s%ﬂma ehou :an then about r five f"u‘;’
- . il - nl
cook chc»apg‘;" largesmall best g "cﬁs’"""”‘f’ru o g
' son muc _
8 | “"““ tesh ™ bealen half plece.,
' addgar vin -
sauce ke ; m:k' Cul reundlay
cheese milk 50 joiy ! 'pec.es
bread m&:'fr_m cookad 32 slices kP
yalks beat ik
pudding

bake
E)O:?Ed sweel ';é.;'m:

100

Image source: http://www.adityathakker.com/wp-content/uploads/201 7/06/word-
embeddings-994x6/75.pNng

RN N S for loss function, replace

cateqory cross entropy
with binary cross entropy

Example: Given text (e.g., movie review, Tweet), figure out whether
it has positive or negative sentiment (binary classification)

od
= S . .
Toxt % ‘*@ Pos@we/negatwe
@ v sentiment
| = ©| Classification with > 2
Common first step for text:-- classes: dense laver
turn words into vector | oS 1AYSt,
representations that are RNN layer softmax activation

semantically meaningful Classification with 2 classes:
dense layer with 2 neurons & softmax |
equivalent to dense layer with 1 neuron &
sigmoid activation (called logistic regression)

In keras, use the
Embedding layer

Word Embeddings

Example of self-supervised learning
Even without labels, we can set up a prediction task!

Hide part of training data and try to predict what you’ve hid!

Word embeddings will be covered in your next recitation
(it’s a clever application of predictive data analytics concepts)

RNNs

Demo

RNNs

e Neatly handles time series in which there is some sort of
global structure, so memory helps

* |f time series doesn’t have global structure, RNN
performance might not be much better than 1D CNN

* An RNN layer by itself doesn’t take advantage of image/text
structure!

* [For images: combine with convolution layer(s)

e [or text: combine with embedding layer

A Little Bit More Detall

> J > output prediction

Time series RNN layer

> output prediction O

Time 1 > output prediction 1

Time 2 > output prediction 2

K

Timet

Time
t+ 1

> > output t — 1
/ SimpleRNN tends to
forget things quickly
> 7 > oufput t
output[t]

= activation{np.dot(W, input[t])

+ np.dot (U, current state)
+ b)

/ > output t + 1

Add explicit long-term

memory!
Iliﬂ‘le > —7 > output t — 1
/ But need some way
s to update long-term
memory!

Timet

> —7 > outputt

Time
t+ 1

> —7 > output t + 1

Long-term memory

/ Add explicit long-term

memory!
I'i“f - > output t — 1
/ But need some way
to update long-term
memory!
Time t > > output t

Long-term memory

/ Add explicit long-term

memory!

Time
t— 1

> > output t — 1

V4

> > output t

But need some way
to update long-term
memory!

Timet

Time

Timet

Long-term memory

/

, W

Add explicit long-term
memory!

Long-term
memory updater

V4

> output t — 1

But need some way
to update long-term
memory!

Called a “long short-term
memory” (LSTM) RNN

Rememlbers things
longer than SimpleRNN

> output t

Learning a Deep Net

Gradient Descent

Suppose the neural network has a single real number parameter w

4l oss L

tangent

The skier wants to get to the lowest point

The s

Kler s

'he d

Ine

erivati

nould move rightward (positive direction)

ve LL at the skier’s position is negative

In general: the skier should move In opposite direction of derivative

In higher dimensions, this is called gradient descent
(derivative in higher dimensions: gradient)

>
w

Gradient Descent

Suppose the neural network has a single real number parameter w

4l oss L

NP,
\

]Jv

Gradient Descent

Suppose the neural network has a single real number parameter w

4l oss L

.

]Jv

Gradient Descent

Suppose the neural network has a single real number parameter w

4l oss L

\"‘:\

]Jv

Gradient Descent

Suppose the neural network has a single real number parameter w

4l oss L

In general: not obvious what error landscape looks like!
= we wouldn’t know there’s a better solution beyond the hill

Popular optimizers . ')
(e.g., RMSprop, gctory.

AdaDelta) are variants
of gradient descent

—>

L_.ocal minimum Better

solution
o

In practice: local minimum often good enough

]Jv

Gradient Descent

2D example

Slide by Phillip Isola

Remark: In practice, deep nets often
have > millions of parameters, so very
high-dimensional gradient descent

Handwritten Digit Recognition

Overall loss:

Training label: 6

1 n
= LR(h(x). v)
=1
v
f1(X;) fo(f1(Xi)) ‘
> > » | L OSss > error
L L(f2(f (X)), Vi)
28x28 Image —
X f1 f2

Gradient: 2n 2ziet La(fi (),)
00

Automatic differentiation is crucial in learning deep nets!

All parameters: 6

Careful derivative chain rule calculation: back-propagation

| Training B
| example | “ example | ‘l example | ‘. example | '. example (e

Gradient Descent

Training (I

2

Training [

3

Training [

4

Training |

5

| Training |
3;l example |

Neural Neural Neural Neural Neural Neural
net net net net net net
oSS loss 2 loss 3 loss 4 loss 5 oSS n

!

We have to compute lots average loss Computing gradients
of gradients to help the | using all the training data
skier know where 10 9ol compute gradient Seems really expensive!

and move skier

Stochastic Gradient Descent (SGD)

| Training [l Training [Training |[@ Training [@ Training [Training |
| example | “ example | ‘1 example | ‘I example | " example [k " example |
2 3 4 5

Neural Neural Neural Neural Neural Neural
net net net net net net
oSS loss 2 loss 3 loss 4 loss 5 oSS n

'

compute gradient
and move skier

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

| Training [l Training [Training |[@ Training [@ Training [Training |
| example | “ example | ‘1 example | ‘I example | " example [k " example |
2 3 4 5

Neural Neural Neural Neural Neural Neural
net net net net net net
oSS loss 2 loss 3 loss 4 loss 5 oSS n

'

compute gradient

and move skier

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

| Training [l Training [Training |[@ Training [@ Training [Training |
| example | “ example | ‘1 example | ‘I example | " example [k " example |
2 3 4 5

Neural Neural Neural Neural Neural
net net net net net
oSS loss 2 loss 3 loss 4 loss 5

'

compute gradient
and move skier

Neural
net

'

oSS n

SGD: compute gradient using only 1 training example at a time

(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

| Training [l Training [Training |[@ Training [@ Training [Training |
| example | “ example | ‘1 example | ‘I example | " example [k " example |
2 3 4 5

Neural Neural Neural Neural Neural Neural
net net net net net net
oSS loss 2 loss 3 loss 4 loss 5 oSS n

'

compute gradient

and move skier

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

| Training [
| example | “ example | ‘1 example | ‘I

Training (B

2

Training [

3

Eiel |
example | " example [EE

4

Training |

5

| Training |
3 example |

Neural Neural Neural Neural Neural Neural
net net net net net net
oSS loss 2 loss 3 loss 4 loss5 -+ |lossn

'

compute gradient
and move skier

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

| Training [
| example | “ example | ‘1 example | ‘I

Training (B

2

Training [

3

Eiel |
example | " example [EE

4

Training |

5

| Training |
3 example |

Neural Neural Neural Neural Neural Neural
net net net net net net
oSS loss 2 loss 3 loss 4 loss5 -+ |lossn

'

compute gradient
and move skier

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

| Training [Training (M Training [Training [Training [Training |
| example | “ example | ‘l example | ‘. example | '. example [“ example |
2 3 4 5

Neural Neural Neural Neural Neural Neural
net net net net net net
oSS loss 2 loss 3 loss 4 loss 5 oSS n

'

compute gradient
and move skier

An epoch refers to 1 full pass
through all the training data

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Mini-Batch Gradient Descent

| Training (@ Training | Training [Training (@ Training [Training |
| example | " example | ‘l example | “ example | ‘l example [k ’| example |
2 3 4

Neural Neural Neural Neural Neural o Neural
net net net net net net
oSS loss 2 loss 3 loss 4 loss5 -+ |lossn

!

average loss

'

compute gradient
and move skier

Mini-Batch Gradient Descent

Training [@ Training [Training (M Training |

example | ‘. example | " example [k “ example |

| Training (@ Training [
| example | " example | ‘l
2 3 4 ®

Neural Neural Neural Neural Neural Neural
net net net net net net
loss 1 loss 2 loss 3 loss 4 loss 5 loss n
| |
Batch size: how many v
training examples we average loss
consider at a time 1

(in this example: 2) compute gradient

and move skier

Best variant of SGD to use?
Best # of epochs? Best batch size?

Active area of research

Depends on problem, data, hardware, etc

Example: even with a GPU, you can get slow learning (slower
than CPU!) if you choose # epochs/batch size poorly!!!

