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What we've seen so far are “feedforward” NNs

What if we had a video?
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Time series

RNNs

Feedforward NN'’s:
treat each video frame
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RNN’s:
feed output at previous
time step as input to
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RNN layer
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Under the Hood

current state = 0
for input 1n 1nput sequence:

output = g(input, current state)

current state = output ‘\\\

J
Different functions g correspond to different RNNs




Example: SimpleRNN

memory stored in current _state variable!

¢l EEN EN BN BN BN BN BN BN BN BN BN BN BN BN BN B B B = W

----------------------

for input 1n 1nput sequence:
output = activation(np.dot(W, input)
+ np.dot(U, current state)
+ D)
current state = output
Activation function could, for instance, be Rel .U

Parameters: weight matrices W & U, and bias vector b

Key idea: it’s like a dense layer in a for loop with some memory!
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RNNs

Example: Given text (e.g., movie review, Tweet), figure out whether
it has positive or negative sentiment (binary classification)

Positive/negative

Text —» —> .
sentiment

Classifier

Common first step for text:
turn words Iinto vector
representations that are RNN layer
semantically meaningtul




(Flashback) Example Application of PMI:
Word Embeddings
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Flashback) Do Data Actually Live on
Manifolds?
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RN N S for loss function, replace

cateqory cross entropy
with binary cross entropy

Example: Given text (e.g., movie review, Tweet), figure out whether
it has positive or negative sentiment (binary classification)

od
= S . .
Toxt % ‘*@ Pos@we/negatwe
@ v sentiment
| = ©| Classification with > 2
Common first step for text:-- classes: dense laver
turn words into vector | oS 1AYSt,
representations that are RNN layer softmax activation

semantically meaningful Classification with 2 classes:
dense layer with 2 neurons & softmax |
equivalent to dense layer with 1 neuron &
sigmoid activation (called logistic regression)

In keras, use the
Embedding layer



Word Embeddings

Example of self-supervised learning
Even without labels, we can set up a prediction task!

Hide part of training data and try to predict what you’ve hid!

Word embeddings will be covered in your next recitation
(it’s a clever application of predictive data analytics concepts)



RNNs

Demo



RNNs

e Neatly handles time series in which there is some sort of
global structure, so memory helps

* |f time series doesn’t have global structure, RNN
performance might not be much better than 1D CNN

* An RNN layer by itself doesn’t take advantage of image/text
structure!

* [For images: combine with convolution layer(s)

e [or text: combine with embedding layer



A Little Bit More Detall

> J > output prediction

Time series RNN layer



> output prediction O

Time 1 > output prediction 1

Time 2 > output prediction 2

K



Timet

Time
t+ 1

> > output t — 1
/ SimpleRNN tends to
forget things quickly
> 7 > oufput t
output[t]

= activation{np.dot(W, input[t])

+ np.dot (U, current state)
+ b)

/ > output t + 1



Add explicit long-term

memory!
Iliﬂ‘le > —7 > output t — 1
/ But need some way
s to update long-term
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Long-term memory
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Long-term memory

/ Add explicit long-term

memory!

Time
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Time

Timet

Long-term memory

/

, W

Add explicit long-term
memory!

Long-term
memory updater

V4

> output t — 1

But need some way
to update long-term
memory!

Called a “long short-term
memory” (LSTM) RNN

Rememlbers things
longer than SimpleRNN

> output t



Learning a Deep Net



Gradient Descent

Suppose the neural network has a single real number parameter w

4l oss L

tangent

The skier wants to get to the lowest point

The s

Kler s

'he d

Ine

erivati

nould move rightward (positive direction)

ve LL at the skier’s position is negative

In general: the skier should move In opposite direction of derivative

In higher dimensions, this is called gradient descent
(derivative in higher dimensions: gradient)

>
w



Gradient Descent

Suppose the neural network has a single real number parameter w

4l oss L

NP,
\

]Jv



Gradient Descent

Suppose the neural network has a single real number parameter w

4l oss L

.

]Jv



Gradient Descent

Suppose the neural network has a single real number parameter w
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Gradient Descent

Suppose the neural network has a single real number parameter w

4l oss L

In general: not obvious what error landscape looks like!
= we wouldn’t know there’s a better solution beyond the hill

Popular optimizers . ')
(e.g., RMSprop, gctory.

AdaDelta) are variants
of gradient descent

—>

L_.ocal minimum Better

solution
o

In practice: local minimum often good enough

]Jv




Gradient Descent

2D example

Slide by Phillip Isola



Remark: In practice, deep nets often
have > millions of parameters, so very
high-dimensional gradient descent



Handwritten Digit Recognition

Overall loss:

Training label: 6

1 n
= LR(h(x). v)
=1
v
f1(X;) fo(f1(Xi)) ‘
> > » | L OSss > error
L L(f2(f (X)), Vi)
28x28 Image —
X f1 f2

Gradient: 2n 2ziet La(fi (), )
00

Automatic differentiation is crucial in learning deep nets!

All parameters: 6

Careful derivative chain rule calculation: back-propagation



| Training B
| example | “ example | ‘l example | ‘. example | '. example (e

Gradient Descent

Training (I

2

Training [

3

Training [

4

Training |

5

| Training |
3;l example |

Neural Neural Neural Neural Neural Neural
net net net net net net
oSS loss 2 loss 3 loss 4 loss 5 oSS n

!

We have to compute lots  average loss Computing gradients
of gradients to help the | using all the training data
skier know where 10 9ol compute gradient Seems really expensive!

and move skier



Stochastic Gradient Descent (SGD)
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'

compute gradient
and move skier

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)
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Stochastic Gradient Descent (SGD)

| Training [ Training (M Training [ Training [ Training [ Training |
| example | “ example | ‘l example | ‘. example | '. example [ “ example |
2 3 4 5

Neural Neural Neural Neural Neural Neural
net net net net net net
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'

compute gradient
and move skier

An epoch refers to 1 full pass
through all the training data

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)



Mini-Batch Gradient Descent

| Training (@ Training | Training [ Training (@ Training [ Training |
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!

average loss

'

compute gradient
and move skier




Mini-Batch Gradient Descent

Training [@ Training [ Training (M Training |

example | ‘. example | " example [k “ example |

| Training (@ Training [
| example | " example | ‘l
2 3 4 ®

Neural Neural Neural Neural Neural Neural
net net net net net net
loss 1 loss 2 loss 3 loss 4 loss 5 loss n
| |
Batch size: how many v
training examples we average loss
consider at a time 1

(in this example: 2)  compute gradient

and move skier



Best variant of SGD to use?
Best # of epochs? Best batch size?

Active area of research

Depends on problem, data, hardware, etc

Example: even with a GPU, you can get slow learning (slower
than CPU!) if you choose # epochs/batch size poorly!!!



